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ABSTRACT

, A new method of deformation calorimetry is described by which the change of
stored energy with deformation is measured. For the determination of the dynamic
encrgy balance of plastic deformation, we deform metal single crystals by tension and
measure the applied load K(7), the cffective deformation rate E,,, and the temperature
7(?) of our specimen with high accuracy during deformation. The load is determined -
by using a reference signal (load-fixpoint), the deformation rate by means of a tensio-
meter which records the strain directly at the crystal. Measurement of specimen
temperaturc is carricd out with the aid. of -micro-thermistors of high temperature
resolution, AT == 2 - 10~ * K, and time resolution Af < 0,1 s. An essential fezture of
our method is the procedure developed for evaluation of the T(r)-curves (which are
severely influenced by wunavoidable heat conduction) using the thermoelastic
effect. It works by means of the response function of hmt conductxon which we record
during elastic deformation of the specimen. -

R Some results are gwen on thP stored energy and n.s changc of a copper smglc
crystal deformed at room temperature. . .

1. mmonucnou,

~ Plastic defomumon '

. A-well-known expenmental prowdure for thc mth:gauon of the deformatlon
behavmur of solids is the tepsile test, where a cylindrical specimen is elongated under
the influence of an external load. During the test the load K and the elongationZ-— Lo
(Lo = initial spzcimen length) are msured (Fig. 1a). These measured quantities are
evaluated for stress o = load[cros-secuon of specimen and rei ative strain £ = (L —

. Lg)/Lo and represented in stress-strain curves (Fig. 1b). - _ :

There are two different kinds of deformation processes;: - :: =i::-. T

(1) Elastlc detormatwn' thc specxmen elongats proporuonal to the mcr&smg
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Fig. 1. Tensile test (2), stress-strain curve (b).
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stress (Hooke's Iaw) and retains its initial length when the stress is removed (reversible
deformation)-

(2) Plastic deformation: above a certain critical stress o,,;, the specimen begins
io szrmn IITCVCISIDIY. uunng umoamng mc plas‘uc part Ol QCIOMOD, wmcn can
exceed that of elastic deformation by some orders of magnitude, remains unchanged.
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The fundamental microscopic process for the deformation of metals and other

crvstalline solids is the generation and movement of llns_shaned imnerfections of the
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crystal lattice, called dlslomt:ons. The increase of lattice-defect concentration which
is caused by plastic straining leads to a growing resistance against additional deforma-
tion. This effect 1s called work-hardening.

Calorimetry

The changes in ~oncentration and arrangement of dislocations during plastic
deformation are associzi=d with a change in energy content of the specimen. Since the
energy balance of physical processes is 2 means to understand them, we use a calori-
metric method to measure e change of enthalpy AH during deformation. In metals,
about 909 of the work of deformation are converted into heat, 109/ remain in the
crystal as stored energy.

Two methods are emploved for measuring energy storage of plastic deforma-
tion: annealing and deformation calorimetry®. Here, we report on the application
of a new method of deformation calorimetry?: 3. The energy stored in plastically
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difference of the work of deformation E, ., and the heat Q evolved duoring glcermanon:
Epe=E.y—Q R - Y ¢ )]

For the determination of O the crystal temperature has to B¢ measnred dunnz the -

deformation process. Compared with earlier methods of ‘deformation .calorimetry,
we have developed a method which is more precise in all measured quantities and
uses 2 new procedure of evaluation of the temperature curves. This. procedm'c of
evaluation enables ustormhthcaccumcy ofannmhng mlonmetxy atl&stand to
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geta better accuracy than with earlier deformation calorimetry methods. The niost
lmportant reasons to apply deformation tnlonmetry instead of annealing calorimetry
are:
(l) Deformatxon mlonmetry -is -suitable -for analysxng dynamics of plastic
deformation energetiéally because all mabured ‘quantities are determined during the
deformation process.

(2) By deformation calorimetry one can determme the change of stored energy
with deformation, e,,,,, for one and the same crystal along its entire deformation curve.

2. THE EXPERIMENT -

Specimen

Copper single crystals of nominal purity 99,997 {Eimore Cu of Kabelmetall,
Osnabriick) wer: grown 4 mm in diameter and 130 mm in length by the bridgman
method in a vacuum of 10~ % torr, using crucibles of highest purity graphite (EX 600
of Ringsdorff, Bad Godesberg).

Quantities of deformation calorimetry

For the determination of the change of stored energy, we deform crystals by
tension at constant deformation rate. Because the deformation is carried out only in
very short intervals amounting to about 3 - 10”2, one may write eqn (1) in terms of
differences per time interval Ar: v

4E,,, = AE_, — AQ - - 2

from which the rate of energy stored in the crystal, E,,,,, is calculated:
B -0 | (€)

E,.,is calculated from the load at the crystal, K, and the deformation rate L. E.,
K- L The energy expended per time and volume unit is: -

E,0m3sY=g-¢ ' : @

£ is the relative strain rate mcasured directly at thc crystal. The rate of heat evolved 0
follows from the measured rate of temperature T,,;, durmslr plastxc deformatlon and the
specific heat of the crystal at constant pressure ¢ -

O0m™>s =T . : ®
To take into account the crystallographic orientation of the specimen axis and of the
planes in which dxslomtlon movement takes place, ¢ and o are substituted by plastic
shear strain @ and shear stress = (for the conversion formulae see ref. 4). For this case
from eqn (73] the change of stored energy with deform‘;hon, Cior (a) is calculated:

B.. _AE.. . - S
e,.,.(a)—a ;;‘1 —= R - ©:

-3
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The total stored energy of the crystal, E,,, ., follows by integration: . ~
- X=& : B R ] ‘.‘; N
Eul@ = [ cwtiax L m
: ) = T ’ - - I R
Courseofamea.surmxent L T TV e

FgureZshowsthcmmsuredmrmnmsaryforthcm&summcutofthc-‘

change of stored energy. Load K(z), crystal length L(r) and tempaature 1‘(t) are .
recorded asafnncuonofnmet Forthcdcformauonappamtussech.B.Abont%/‘
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. of the load sxgna.l are eleetmmlly suppr&ssed for msons of evaluatlon acazracy At‘__
the beginning of the experiment the crystal is subjected to an appropnate load. At -
t =1, the deformauon is stopped and the crystal begins to relax. The: temperature
decrease at the beginning. of the experiment is due to the the*moelastu: effect. After
mchmg the yield point, 7(¢) rises due to extensive plastic deformatxon. ‘The tempera-
ture curve T(¢) is considerably affected by heat conduction.. Ifthe experiment could be
carried out completely adiabatically, the specimen temperature should run along the-
dotted curve in Fig. 2. The large difference between the adiabatic and the real course
of temperature explams the necamty of -a wpable evaluatxon prowdure for- the

3‘ EVALUAT!ON OFE HHT P‘RODUCTION

- TTxe mtogral equatzon far tlze evalzaman of Ihe Iemperature curves -
Heat production in the crystal and heat conduction to the gnps of the deforma-

tion machire can be described by the one-dlmensmnal mhomogeneous equauon of
heat conduction: . . :

- o 2 - 7 . -
- 0T(x, l) 2. 7] T(J:, t) ] | n(x, i 7 ®
at Ox prc !
T = temperature; X, = space and time coordmates = )./p c; 2 p, careh&t

" conductivity, density and specific heat of the crystal. n(x 1) is the hwt produced per
time and unit yolume in the specimen, in the following called power density. The
"measured temperature is 7(xy, 1), Xo bcmg the posmon of a thermistor which is used
for temperature measurement. - -
" 'We consider the case where n(x, t) can be separated mto factors.

n(x t) = lt(x) 1.0} PR P ™
This means that the nme-dcpendenoe of the yxeld of h&t sourc&s, f (t) is mdependent
of their position along the crystal, the latter. bemg described by the: dimensionless
function u(x). To a rather good approximation this sitnation prevails durmg plast:c
(and elastic) deformation of our bar-shaped specimen, since the heat rate is controlled -
by the external strain rate alone, while its dependence on. x vanes with_the crystal -
cro&s-secnon oniy. In the middle region of homogeneous deformation, u(x) is
constant and-may be set equal unity, arbitrarily (Fig.. 4). Approaching the crystal
~ shoulders; p(x) vaniches; the exact course of u(x). being unknown.. Additionally, the
. boundary conditions of _the heat conduction problem _are maeomble. Therefore,
eqn (8). cannot be solyed by immediate: ‘calculation. However ‘the evaluation-of the
measured T(x'o, ‘f)-curves'can be achieved. in- the followmg way,’ denved mathemati-
‘cally in ref. 3. Itxsposrbletoemeh&tsoummthmthec:ystal ofknownnme
- ’dependenoe, f(1),s:- This'is realized in a-test measurement as will be shown below
The course of temperature of the spenmen belongmg to the f(t)m, in case ofconstant
spaee dlstn'bntlon, p(x) = consta.n, wrthout any hmt conducuon is mlled test.
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funouon. ‘The comspondmg true course of tempcrature, m&sured at the pOSltlon Xo3
is the response function 7(xy, ), oC #(r) of the heat conduction system. The course
of k() is determined by the impressed time function of heat production f(t),.,, and
the result of the boundary conditions of heat conduction and space distribution u(x)
underlying the experiment. With the aid of this function the solution of eqn (8) can
be written for any f(¢), but under t.he same u(x) and the same boundaxy condmons,
mthcform ofmtegml equations>: .- ,

T(xo, ! J axu) -h(t — t)-dr 7 / . (10)
£F—wm )
=z _
Teny=——— [ - 20 an
r—— ar : . ;
As k{?) is already included in the mtcgratxon over x, this vanablc do&s not appw.r in
egns (10) and (11).

To realize experimentally the response function of the known heat rate fi (t)m‘,
we perform 2 pure elastic deformation of our specimen at constant stress rate; G-
The description of the time function £(f),.,. corresponding to the externally impressed
stress rate is straightforward. We only have to describe the adiabatic homogeneous
case, since f(r) is independent of the heat conduction and spatial inhomogeneities.
First, we use the equation of thermoelastic efi'ect for adnabatlc homogeneous deforma-
tion: R

To=— 6 = E- bua S (12
P - . .

(uniaxial tensile deformation, constant stress rate ‘g,.,.). This equation is valid not
only for isotropic materials but also for elastically anisotropic cubic crystals. &; T,
and c, arc linear extension coefficient, absolute temperature, and specific heat at
constant pressure, respectively. Second, we derive the connection of -f(f) with the
temperature change at the position of the thermistor, T{x,, ): In case of homogeneons

admbauc condmans, the equauon of h&t conduction (3) ylcldS' N S

m . pPTcC. f®» ] : o o (13)
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thh u(xo) normahzed to unity, as.introduced above: To. apply eqn (10), om:has to"
guamntee tbat fm, < 0) =0; thus we write:

s =p c-Tkb@ . T o (14)‘

-

using the stepfunction 8(1), (B(t < 0) = 0,8(t > 0y — 1). The time denvatwe of (14) }
becomes: o
MOm =P EGon5®) ' . (14a)

- with &) = Dlrac function.. The S-function makes the mtegratlon of eqn (10) vcry
simple:

- - =z . R - -
TG0 Do = o | PE"E b= 50D - bt — 1)-dF
- ‘ )

@15)
T(xg Dhess = E = Gyese - B(1)
differing from zero fort > 0.
T(xg» D¢ is the measurable variation of tempcrature due to the ‘thermoelastic
experiment (Fig. 5). With T(xg, #),cs:> 2lso #(7) is known via eqn (15). Supposing that
the space distribution of heat production, u(x), is the same during plastic and elastic
deformation to a good approximation, the temperature variation due to’ plastic
deformation, T(x,, £), will b= shown to be represented i in terms of A(r). As f(t).“t is
ﬁxlly determmed T(xo, t) is also calibrated.
Solution of the mtegral equation by means of a parameter 'epresaztanan o

The numerical calculation of the integral kernel f(7) (r&specuvely dffat) for
given temperature curves T(x, ) and /(z) is difficult. In general, a sirongly oscillating
function f(z) results since 7(z) and A(?) are affected by noise. This behaviour of such

Siress &

" Temperature T

do T vimet - - g

Fig. 5. 'l’cstandtspomefnncﬁon.

Fxg,ﬁ.'lhecomseofstrm _
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integral equations is known>* %.-As an alternative to their general solution we start
" from a parameter rcpresentation of (7). The introduced parameters are calculated
using least squares analysis. The parameter reprmcntahon:sbasedontbeexpenmen—
tally given situation_ As the crystal deforms plastically and elasb&lly dunng an expen-
mcnt,thehmtratcofthcspeamenoonsxstsoftwopans S

(1) = pea + [(Dmermo
or equivalently:
Tﬁ(xo’ l) = Td(x(h t) + :hctﬂo(xo’ l)

The adiabatic plastic and thermoelastic temperature changes are easily derived from
the course of stress o(t). Because the deformation is performed at constant rate, the
heat production during plastic deformation is written proportlonal to the course of

stress, o(f). Thus, we get for ¢ > r,:
7"“ =b-[o, +6,-(t —1,)]-0(t — t;)

b and ¢, are unknown parameters. For the course of stress and the meaning of ¢ a,, G2
see Fig 6.

The thcnnochsnc change of temperature results from the stress rate, a(t)
From egn (12) we get:

T mrr 3 = E- {6, - [0 — 6(t — )] + & - 6 — 1)}

Again 6-functions are introduced to guarantee that the slope 6, apphes for0<r<1y,
whereas ¢, is effective for 7 > ¢,. The only simplification corsists in reprwcntmg a(?)
by two straight lines. Since the crystal is never deloaded between two measurements,
yield point phenomena are negligible. Thus, the straight lines are good appronma
tions of o(7) except for times close to 7, (Fig. 2).

For the application of the integral equation (10) T“(xo, I) is mu]uphed byp-c
and differentiated yielding &f/d1. The subsequent integration is nearly as simple as in
the previous case: ,

Troram(X0, 1) = [b - 6y + E-651-h(t — 1) + E- &, - [h(®) — h{t — ;)] +
s=r—1 - }
f k) -du ,4 36
=0 - B o 7
Using least squares analysis the parameters b and 7, are detcrminedby making
T param (X0, 7) the optimal approximation of the measured temperature curve 7(x,. 1)

From b the temperature rate of plast.c deformanon, whu:hxs theaim of the evaluatlon,
can be calculated: .

ThGet=t)=b-0 - - A |



4. EXPERDAENTAL DETAILS

The deformation machine -
Figure 3 shows the block dlagram of the wholc apparatus In the dcformauon
machine, bar-shaped crystals can be deformed under tension. Crystal and load oell are
-located in a vacuum chamber to suppress heat convecuon. We sticceeded in d&sl ening
a machine of rather high stiffness. The spring constant of the whoiz apparatus -
including load cell and all necessary joint elements of a real measurement, amounts to
10* N mm™?. This equa’s the stiffiness of the crosshead of an Instron deformauon
machine (ﬂoor model TT-BM-L) without load cell and jomt e!emcnts SR

Mea.surment of load

Systematic errors of load mmsurement resuli from the temperature drift of the
bridge amplifier and from changes in cable capacitance. By means of a reference
signal, named load-fixpoint, the influence of such disturbances could be eliminated.
For this purpose, the strain gauges of the load cell are operated as a halfbndgc
A further half-bridge consisting of wire resistances is connected in parallel (Fig. 7).
With switch S, it is possibZe to change from load-cell to load-fixpoint. Since all disturb-
ances outside the unit consisting of load-cell and reference half-bridge cause the same
error signal, these infiuences are eliminated if the load is measured from the load-
fixpoint. Using this fixpoint we gain at least one order of magnitude in accuracy of
load mmsuxvement, mam]y long time drift is suppressed in this way. -

3 }s
B . g £
Stroin gauges - :E
oo
= S
ier fred ) . Mstor Cla
lguency - . .. Cardan joint L !
ifier- Linear differen-
pirrer * tial transducer
Resista T 5 T clomp (top view)

' Wedge Spea'man
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Fig. 9. Comparison with externally measured strain.

Fig. 10. Course of the effective crystal length of two single crystals oriented for singe glide.

Measurement of dcfomalwn rate :

The determination of the deformation rate (r&sp stram), which is eﬁ'ectxve in
the middle part of the crystal, suffers from large uncertainties. The elasticity of the
deformation machine and the influence of the grips cause a loss of external deforma-
tion velocity of about 107/ (though our machine is a rather hard one). To avoid such
errors, we measure the deformation rate directly at the crystal by means of an appro-
priate tensiometer. The tensiometer is given schematically in Fig. 8. Its essential
features are:

(1) Near its centre of mass, it is suspended cardanically and free in tmnslatlon
perpendicular to the crystal. -

(2) Two cross-joints transmit ‘the clongatlon towards a. linear dxﬂ'crcnnal
transducer. These spring joints are free of mechanical play. -

(3) For attachment to the crystal two clamps are forced apart by mxcro—motors.
After deloading of these clamps the crystal is held elastically.

For comparison with externally measured strain, we used thc cxpcnmcnt
shown in Fig. 9. To getr quantitative results, we call AL_,, the elongation mmsumd at
the grips, Al the elongation measured directly at the crystal. L, and /, denote thc'
corresponding reference lengths. The external and true strain are given by: . -~ -

— ALm - —_— Al i - j .- : ’ : PR ;_:_:: B ;7‘:\“(
fen = Lo &= Iy - : ) . -*:~i:j.:-‘ ;
To get a measure for the deviations between ¢, and ¢, it seems convement to deﬁnc
an eﬂ'ectxvc crystal lcngth Lo ot (as is often done in htemture) nielo ST S




et tny Lo—Loa - - - .- =

R ™ B R ,
If Lo 4 would turn out to be constant £ could be calculated from the externally
measured elongation AL,,,, using ¢ = AL, ,/Lq .- However, Fig. 10 shows that there

exists no constant effective crystal length. Represented is the ratio Lo /Lo [7]asa
function of relative strain for two copper crystals oriented for smgle ‘glide. Th&c
results can be explained as follows: Near the gnps, the crystal deforms less than in its
middle part. The dewatxons are most pronounced at the begmmng of the deformahon.
They are not rcproduable in the low deformation remon, since the qystal has to
adjust to the grips.

Because the stored energy itself amounts only to 10 of the expended werk, the
measurement of deformation rate must necessarily be performed directly at the crystal.
This holds for all deformation calorimetry methods. Othcrwxse systemauc errors of
1009 may arise in the detcnmnanon of stored energy. -

Measurement of temperature
To determinc the heat evolved during plastic dcformauon, the temperature is
measured by means of ntc-resistors (Siemens K19). They consist of a small glazed
semiconductor bead, about 0,4 mm i diameter with Mc-leads of diameter 20 pum.
To measure the tcmperature, “the resistance of the thermistor being attached to the
_ crystal is determined with the aid of a Wh@atstone dc-bndge contmmng a chopper
stabilized pm—amphﬁer. )
. Technology of establlshmg thermal contact bctwecn thermistor and crystal. The
main problem in stabhshxng thermal contact between crystal and thermistor arises
from the deformation of our specimen. This deformation can reach 509 for a tensile
deformed single crystal. Our meihod of attachmg thcrmxstors to the crystal is illustrat-
ed in Fig. 11. First, the lead wires are glued near the esistor bead by an adhesxvc
(UHU Universal) which does not harden completely and therefore adheres to the
- crystal even at large plastic strain. Second, the thermistor is wholly embedded in
Silicon paste (Wacker Chemie, Miinchen; paste K12). It kas vanishing electrical
conductivity. Because of its low viscosity (at room temperature) the thermal contact
remains uneffected by plastic deformation. An estimate of the heat capacity C,,,; of
thermistor ané beat conduction paste amounts to C,,,; = 5-107*JK ™. Thisequals
the heat capacity of about 1.5 - 10~ 2 g Cu. Because our crystals have a mass of 15 g

Specimen . Thermistor

. bead : : i ) ) ) ) )
Lead Uhv - - - -conduction ~-— - . S
. adbesitive. - Iposfr.’ . .- - B
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and are very good heat conductors, the feed back of our temperatnrc demcnt on the :
crystal temperature itself rcmams negligible.

5 m—sm:rs o

Figures 12-14 show mults of rmeasurements on a copper crystal oncnted for
suig!c glide, deformed at room temperature. From the measured encrgs per time
unit E, ., 0, E,,,,, the respective energy changes with deformation are calculated: We
generalize definition (6) a.nd make use’ of the condmon a,T= constant, given m the
experiment, to get:

3E.. E..
€xol@) = - 3z a
e (@) = OE..:““ = E;“’ = t;i- = t(a)
, o .
w0 == a®

€.y (0). g(a) and e,,,, (a) are represented as functions of mean shear strain @ in Figs. 12
and 13. The use of e, (a), g(a) and e, (a) instead of the measured cnerglw per time
E.,,. O and E,,, has two advantages:

(1) The trivial proportionality of energics per time to the deformation rate is
scpamted The Iatter statement, however, does not mean that €orpr 9 and €., are
independent of strain rate 4. —

» (2) e.,, (o) turns out to be identical thh the resolved shear stress t(a) thus also
q(a) and e,,,, (@) become related to this well-known physwal quantxty, g(a) and e,,,, \a)
are stresses, t00.

E ~ ; eap!"’ el
gla)

Cesgf)
St qla) - . 1 estarlo) ‘mc'ﬂ
- So}
T
”»
J0}
by 0% T
a1y .
ar az as - es

Fig. 12. Shear stress 1(a) and change of heat evolve.. g(a).
Fig. 13. Chbange of stored energy with shear strain epala) - . L NS S
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Fig. 14. Stored energy Eator; large symbols mark resul*s of Gottstein (1975).

‘ 79 measurements were performed divided into 6 sequenoes In Flg. 12 the
division in sequences-is marked by short vertical lines. Obvmusly, the sequenoes join
each other. Because every sequence is wholly mdcpendent of the other (two sequences
mean two. independent- temperature calibrations, mo mdependcnt tcnsxomcter
attachments and so on), the good fit of successive sequenws demonstrats the 1epro-.
ducibility of our measurements. Figure 14 shows the: total stored energy, E .,
calculated by summatxon of the measured cha.ngs of. stored energy ... (@), see eqn
7). For comparison with annm]mg aﬂonmetry, measurements at comparable single
crystals of Gottstein? are also given. Obviously, our accuracy of determining stored
energies is better than that of annealing caiorimetry. One of the main reasons may lie
in the fact that our measurements were gained at one and the same crystal whereas
every value of stored energy determined by annealing necessarily belongs to another
specimen.
The results of measurement of stored energies by different anthors using various
apparatus differ appreciably. In particular, the use of different methods, annealing
and deformation calorimetry, led to quite distinct results. Representative for these
discrepancies is a comparison of the numerous deformation calorimetry results by
Wolfenden®: ® and results of annealing calorimetry®®. The stored energies of poly-
crystals measured by Wolfenden?® are larger, up to a factor 10, than the results of
. Steffen*®. A convincing physical explanation for such a large difference has never
been given, systematic experimental errors excluded. The order of magnitude of the
results of Steffen and Gottstein was verified by a comparative measurement®? using
different annealing calorimeters but specimen which were cut from one and the same
(hmvily) deformed crystal. Figure 14 shows that our stored energies and those of
Gottstein are of the same order of magmtudc. By this the large discrepancies between

" annealing and deformation calorimetry seem to be osercome. As to the deformation
calorimetry measurements of Wolfenden, possibly they fail in the exact evaluation of
measured temperature curves. Wolfenden seems neither to evaluate the whole curve

~ (he uses a certain maximum tcmpemxure), nor to gwe a dcﬁmuve mcthod to takc in-

, to aecount the heat conductlon. , B -



. The physical discussion of these results together thh mullsata[lm]-crystal
will be published in ref. 12.

ACKNOWIEDGB!E\'TS

The authors wxsh to thank Prof. Dr. Ch. Schwink for &ssentlal support dunng
the work and Dr. H. Neuh3user for helpful discussions.

The Deutsche Forschungsgemeinschaft is acknowlcdgéd gratcfully for ﬁnanclal 4
support. » ] B v

REFERENCES

M. B. Bever, D. L. Holt and A. L. Titchener, Prog. Marer. Sei, 17 (1973) 166

D. Ronnpagel, J. Phys. E, in press.

D. Rannpagel, Thesis, TU Braunschweig, 1975“ /

A. Sceger, Moderne Probleme der Metallphysik, Vol. LSm Bedm, 1965

S. Twomey, J. ACM, 10 (1963)97. o

B. L. Phillips, J. ACAf, 9 (1962) 84.

G. Gottstein, J. Bewerunge, H_ Mecking and H. Wollenba'ger Aaa Mdall., 23 (1975) 64!. -
A. Wolfenden, Aca Mertall., 16 (1968) 975. :
A. Wolfeaden, J. Sci. Ind. Res., 32 (1973) 580.

H. Stefien, G. Gottstein and H. Wollenberger, Acra Melall 2! (1973) 683

G. Gottstein, H. Steffen, W. Hemminger, G.Hoscbek.K-Bronem:ann,H.G.GrcweandE.
Lang, Scr. Metall., 9 (1975) 791. -

D. Ronopagel and Ch. Schwink, Acra Merall., in press.

N OUWWONAWKWAWN~

[ =g

-t
W



